Synthesis and Characterization of the Five-Coordinate Sixteen-Electron Manganese(I) Complex [Mn(CO)₃(S-C₆H₄-NH)]⁻

Wen-Feng Liaw,^{*,†} Chien-Ming Lee,[†] Gene-Hsiang Lee,[‡] and Shie-Ming Peng[‡]

Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, and Instrumentation Center and Department of Chemistry, National Taiwan University, Taipei 10074, Taiwan

Received July 31, 1998

Introduction

The NH···S hydrogen bond which arguably plays a major role in determining the redox potential and the electronic structure of biologically important metalloproteins and metalloenzymes (e.g., iron-sulfur proteins, ferredoxins, and rubredoxins)¹ has been observed in biomimetic structural model complexes.²

Recent work in this laboratory has shown that the anionic metal carbonyl fragments ($[Mn(CO)_5]^-$ and $[PhEFe(CO)_4]^-$ (E = Se, Te)) activate the E–E bond of diorganyl dichalcogenides to yield *cis*- $[Mn(CO)_4(ER)_2]^-$ and *fac*- $[Fe(CO)_3(EPh)_3]^-$ complexes which are useful in the syntheses of (CO)_4Mn(μ -ER)_2Co-(CO)(μ -ER)_3Mn(CO)_3 with a unique terminal Co^{III}–CO bond,³ [(CO)_3M(μ -SePh)_3M'(μ -SePh)_3M(CO)_3]^{-/0} (M = Mn, M' = Co; M = Fe, M' = Ni, Zn, Cd, Fe) with homoleptic hexaselenolatometal core,⁴ and distorted square planar [Ni(CO)(SPh)_n-(SePh)_{3-n}]⁻ (n = 0, 1, 2),⁵ the biomimetic nickel-site structure of [NiFeSe] hydrogenases and CO dehydrogenase. In this paper we combine the dichalcogen synthetic technology with the potential for intramolecular H-bonding to synthesize fivecoordinate sixteen-electron Mn(I) complex [Mn(CO)_3(S-C₆H₄-

- (a) Backes, G.; Mino, Y.; Loehr, T. M.; Meyer, T. E.; Cusanovich, M. A.; Sweeney, W. V.; Adman, E. T.; Sanders-Loehr, J. J. Am. Chem. Soc. 1991, 113, 2055. (b) Fan, C.; Kennedy, M. C.; Beinert, H.; Hoffman, B. M. J. Am. Chem. Soc. 1992, 114, 374. (c) Watenpaugh, K. D.; Sieker, L. C.; Jensen, L. H. J. Mol. Biol. 1979, 131, 509. (d) Krüger, H.-J.; Peng, G.; Holm, R. H. Inorg. Chem. 1991, 30, 734. (e) Hill, C. L.; Renaud, J.; Holm, R. H.; Mortenson, L. E. J. Am. Chem. Soc. 1977, 99, 2549.
- (2) (a) Ueyama, N.; Okamura, T.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 8129. (b) Ueyama, N.; Terakawa, T.; Nakata, M.; Nakamura, A. J. Am. Chem. Soc. 1983, 105, 7098. (c) Walters, M. A.; Dewan, J. C.; Min, C.; Pinto, S. Inorg. Chem. 1991, 30, 2656. (d) Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1271. (e) Okamura, T.-A.; Ueyama, N.; Nakamura, A.; Ainscough, E. W.; Brodie, A. M.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1993, 1658. (f) Ueyama, N.; Nishikawa, N.; Yamada, Y.; Okamura, T.; Oka, S.; Sakurai, H.; Nakamura, A. Inorg. Chem. 1998, 37, 2415.
- (3) (a) Liaw, W.-F.; Ou, D.-S.; Li, Y.-S.; Lee, W.-Z.; Chuang, C.-Y.; Lee, Y.-P.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* **1995**, *34*, 3747. (b) Liaw, W.-F.; Chuang, C.-Y.; Lee, W.-Z.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* **1996**, *35*, 2530.
- (4) (a) Liaw, W.-F.; Lee, W.-Z.; Wang, C.-Y.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* 1997, 36, 1253. (b) Liaw, W.-F.; Chen, C.-H.; Lee, C.-M.; Lin, G.-Y.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Chem. Soc., *Dalton Trans.* 1998, 353. (c) Liaw, W.-F.; Chiang, M.-H.; Liu, C.-J.; Harn, P.-J.; Liu, L.-K. *Inorg. Chem.* 1993, 32, 1536. (d) Liaw, W.-F.; Lai, C.-H.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. J. Chem. Soc., Dalton *Trans.* 1993, 2421. (e) Liaw, W.-F.; Ou, D.-S.; Horng, Y.-C.; Lai, C.-H.; Lee, G.-H.; Peng, S.-M. *Inorg. Chem.* 1994, 33, 2495.
- (5) Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299.

Scheme 1

NH)]⁻ stabilized by S,N π -donation of bidentate [S-C₆H₄-NH]²⁻ ligand. To our knowledge, a few examples of transitionmetal carbonyl complexes containing five-coordinate sixteenelectron metal core (d⁶) have been reported,^{6,7} e.g. [Mn(CO)₃-(DBCat)]⁻ prepared by oxidative substitution of two CO ligands of [Mn(CO)₅]⁻ by 3,5-di-*tert*-butyl-1,2-benzoquinone,^{6a} and [W(CO)₃(NHC₆H₄NH)]²⁻ prepared from W(CO)₅(THF) and 2 equiv of monodeprotonated ligands [NHC₆H₄NH₂]⁻ by intermolecular deprotonation.^{7c}

Results and Discussion

When a THF solution of 2-aminophenyl disulfide (0.1 mmol, 0.025 g) and [PPN][Mn(CO)₅] (0.1 mmol, 0.073 g) is stirred under N₂, a rapid reaction ensues over the course of 5 min at ambient temperature to give, by what may be described as an oxidative addition/decarbonylation reaction, a thermally unstable, monodentate (S-bonded) *cis*-[Mn(CO)₄(S-C₆H₄NH₂)₂]⁻ (1) (Scheme 1a), since the IR spectra match those of complex *cis*-[Mn(CO)₄(SPh)₂]⁻ previously established (by IR and X-ray diffraction).^{3,8} As illustrated in Scheme 1b,c, the dark red, five-coordinate, S,N-chelate [Mn(CO)₃(S-C₆H₄-NH)]⁻ (**3**) with

- (7) (a) Darensbourg, D. J.; Klausmeyer, K. K.; Mueller, B. L.; Reibenspies, J. H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1503. (b) Darensbourg, D. J.; Draper, J. D.; Reibenspies, J. H. Inorg. Chem. 1997, 36, 3648. (c) Darensbourg, D. J.; Klausmeyer, K. K.; Reibenspies, J. H. Inorg. Chem. 1996, 35, 1535. (d) Darensbourg, D. J.; Klausmeyer, K. K.; Reibenspies, J. H. Inorg. Chem. 1996, 35, 1529. (e) Sellmann, D.; Schwarz, J. J. Organomet. Chem. 1983, 241, 343. (f) Sellmann, D.; Ludwig, W.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1985, 294, 199. (g) Darensbourg, D. J.; Klausmeyer, K. K.; Reibenspies, J. H. Inorg. Chem. 1996, 35, 1529.
- (8) Liaw, W.-F.; Ching, C.-Y.; Lee, C.-K.; Lee, G.-H.; Peng, S.-M. J. Chin. Chem. Soc. (Taipei) 1996, 43, 427.

^{(6) (}a) Hartl, F.; Vlcek, A., Jr.; deLearie, L. A.; Pierpont, C. G. *Inorg. Chem.* **1990**, *29*, 1073. (b) Jaitner, P.; Huber, W.; Huttner, G.; Scheidsteger, O. J. Organomet. Chem. **1983**, *259*, C1.

Notes

sixteen-electron Mn(I) core was finally isolated as a semisolid from THF-diethyl ether (0.056 g, 73%) after stirring the solution overnight in THF at room temperature. A reasonable reaction sequence accounting for the formation of complex 3 is shown in Scheme 1b,c. The dissociation of a carbonyl ligand resulting from chelate formation of one terminal thiolate ligand Mn^{I} -S-C₆H₄-NH₂ of complex **1** yielded the intermediate fac- $[Mn(CO)_3(S-C_6H_4NH_2)(S-C_6H_4-NH_2)]^-$ (2) with one anionic [S-C₆H₄NH₂] ligand bound to the Mn^I metal in a monodentate (S-bonded) manner and the second anionic [S-C₆H₄-NH₂] ligand bound to the Mn^I metal in a bidentate manner (S,N-bonded), forming a five-membered chelate ring.9 The intramolecular N-H···S interaction (cis arrangement of thiolate and NH₂ group in intermediate $2^{2c,f,7b}$ and the subsequent elimination of 2-aminothiophenol (the coordination of N atom presumably increases the acidity of amine protons to accelerate the deprotonation of NH_2)^{7b,c,10} yielded the five-coordinate complex **3**. The IR spectrum of complex 3 shows two strong CO stretching bands, which supports a facial orientation of three CO ligands. The ¹H and ¹³C NMR spectra show the expected signals for the S,N chelate [S-C₆H₄-NH]²⁻ ligand in a diamagnetic d⁶ Mn(I) species. Oxidation chemistry was also successful in the synthesis of complex 3. Upon contact with dry O_2 , the color of reaction mixture immediately turns from orange to dark red in THF/CH₃CN. The IR and ¹H NMR spectra indicated the formation of complex 3 accompanied by byproducts, H₂O and 2-aminophenyl disulfide identified by ¹H NMR (Scheme 1c'). In this oxidative reaction, the Mn(I) was not observed to undergo oxidation, and consequently, the oxidation process is best assigned to the terminal thiolate ligand to yield 2-aminophenyl disulfide via radical ([S-C₆H₄-NH₂]) recombination, and the concomitant deprotonation of amine proton of intermediate 2 leads to formation of water.¹⁰

To further add credibility to the proposed mechanism, a straightforward protonation of complex 3 was conducted. As illustrated in Scheme 1d, the dropwise addition of the excess thiophene-2-thiol to complex 3 in THF under N2 at ambient temperature led to the formation of an orange yellow solution immediately. The bands at 1973 vs and 1870 s cm⁻¹ disappeared, with concomitant formation of a spectrum (ν_{CO} (THF): 1991 vs, 1891 s, 1879 s cm^{-1}) similar to that observed for intermediate 2, i.e., formation of six-coordinate fac-[Mn- $(CO)_3(S-C_4H_3S)(S-C_6H_4-NH_2)]^-$ (4) (¹H NMR (C₄D₈O): δ 5.53 (br), 4.89 (br) ppm (NH₂)). Attempts to isolate this moderately stable anion 4 was unsuccessful. In common with intermediate 2, complex 4 is very sensitive, converting to complex 3, H_2O and di(2-thienyl) disulfide characterized by ¹H NMR, within seconds on exposure to O_2 (Scheme 1d'). Additionally, the ringopened complex cis-[Mn(CO)₄(S-C₄H₃S)(S-C₆H₄NH₂)]⁻ (5) $(\nu_{\rm CO} \text{ (THF)}: 2055 \text{ m}, 1981 \text{ vs}, 1959 \text{ s}, 1916 \text{ s} \text{ cm}^{-1}) \text{ was}$ obtained upon exposing complex 4 to CO atmosphere in THF at room temperature (Scheme 1e). Apparently, protonation of the amide site of complex 3 labilizes the chelating ligand $[S-C_6H_4-NH_2]^-$ and results in the formation of complex 5. The complete conversion of complex 5 to 4 was observed when removing CO atmosphere under vacuum in THF (Scheme 1e').

Figure 1. ORTEP drawing and labeling scheme of $[Mn(CO)_3(S-C_6H_4-NH)]^-$ with thermal ellipsoids drawn at the 50% probability level.

The reversibility of CO ligand-binding demonstrates the complexes **4** and **5** are chemically interconvertible.

The molecular structure of complex **3** is depicted in Figure 1. Manganese is best described as existing in a distorted tetragonal pyramidal coordination environment with the C(1)O-(1) ligand occupying the apex. The Mn^I–S distance 2.268(1) Å in the title complex is significantly shorter than the reported Mn^I–SPh bond 2.398(1) Å in the *cis*-[Mn(CO)₄(SPh)₂]^{-,8} Mn^{II}–SPh bond 2.442(3) Å in the [Mn(SPh)₄]^{2–,11} The Mn^I–N bond distance is 1.889(3) Å, which is also significantly shorter than that in [Mn⁰(CO)₃(TMPO)] (TMPO = 2,2,6,6-tetrameth-ylpiperidinyl-1-oxo) (1.981(3) Å),^{6b} and in [Mn^{III}(edt)₂(ImH)]⁻ (edt = ethane-1,2-dithiolate) (2.224(7) Å).¹² This shortening of Mn–S and Mn–N bonds in complex **3** may be attributed to the significantly π -donating ability of the bidentate [S-C₆H₄-NH]^{2–} ligand.^{7,13}

Experimental Section

Manipulations, reactions, and transfers of samples were conducted under nitrogen according to standard Schlenk techniques or in a glovebox (Ar gas). Solvents were distilled under nitrogen from appropriate drying agents (ethyl ether from CaH₂; acetonitrile from CaH₂/P₂O₅; hexane and tetrahydrofuran (THF) from Na/benzophenone; ethyl alcohol from CaH₂) and stored in dried, N₂-filled flasks over 4 Å molecular sieves. A nitrogen purge was used on these solvents before use and transfers to reaction vessels were via stainless steel cannula under N2 at a positive pressure. The reagents dimanganese decacarbonyl, 2-aminophenyl disulfide, thiophene-2-thiol, bis(triphenylphosphoranylidene)ammonium chloride (Aldrich) were used as received. Infrared spectra were recorded on a spectrometer (Bio-Rad FTS-185) with sealed solution cells (0.1 mm) and KBr windows. In NMR spectra (recorded on a Bruker AC 200 spectrometer), chemical shifts of ¹H and ¹³C are relative to tetramethylsilane. UV-visible spectra were recorded on a GBC 918 spectrophotometer. Analyses of carbon, hydrogen, and nitrogen were obtained with a CHN analyzer (Heraeus).

Preparation of [PPN][Mn(CO)₃(S-C₆H₄-NH)] (3). [PPN][Mn-(CO)₅] (0.1 mmol, 0.073 g) and 2-aminophenyl disulfide (0.1 mmol, 0.025 g) dissolved in 5 mL of THF were stirred under nitrogen at ambient temperature. A vigorous reaction occurred immediately with evolution of CO gas. IR spectrum, ν_{CO} (THF) 2050 w, 1965 vs, 1951 m, 1913 m cm⁻¹, indicated the formation of anionic *cis*-[Mn(CO)₄(S-C₆H₄NH₂)₂]. The reaction mixture was stirred overnight at room temperature, and the yellow solution completely converted into a dark red solution. Alternatively, upon contact with dry O₂, the color of

⁽⁹⁾ Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M. Organometallics 1998, 17, 2370.

^{(10) (}a) Okamura, T.; Takamizawa, S.; Ueyama, N.; Nakamura, A. *Inorg. Chem.* **1998**, *37*, 18. (b) Sellmann, D.; Emig, S.; Heinemann, F. W.; Knoch, F. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1201. (c) Sellmann, D.; Emig, S.; Heinemann, F. W. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1734. (d) Crociani, L.; Tisato, F.; Refosco, F.; Bandoli, G.; Corain, B.; Venanzi, L. M. J. Am. Chem. Soc. **1998**, *120*, 2973.

⁽¹¹⁾ Swenson, D.; Baenziger, N. C.; Coucouvanis, D. J. Am. Chem. Soc. 1978, 100, 1932.

⁽¹²⁾ Seela, J. L.; Knapp, M. J.; Kolack, K. S.; Chang, H.-R.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. Chem. 1998, 37, 516.

^{(13) (}a) Ashby, M. T. Comments Inorg. Chem. 1990, 10, 297. (b) Penfield, K. W.; Gay, R. R.; Himmelwright, R. S.; Eickman, N. C.; Norris, V. A.; Freeman, H. C.; Solomon, E. I. J. Am. Chem. Soc. 1981, 103, 4382. (c) Sellmann, D.; Geck, M.; Knoch, F.; Ritter, G.; Dengler, J. J. Am. Chem. Soc. 1991, 113, 3819. (d) Hartl, F.; Stufkens, D. J.; Vlcek, A., Jr. Inorg. Chem. 1992, 31, 1687.

Table 1.	Crystallographic	Data	of	Complex
[Mn(CO):	$(S-C_6H_4-NH)]^-$			

empirical formula	$C_{45}H_{35}O_3N_2P_2SMn$
fw	800.74
cryst syst	triclinic
space group	P1
λ, Å (Mo Kα)	0.7107
<i>a</i> , Å	9.925(3)
<i>b</i> , Å	14.251(2)
<i>c</i> , Å	14.202(3)
α, deg	89.84(1)
β , deg	88.89(2)
γ , deg	81.60(2)
$V, Å^3$	1986.8(7)
Z	2
$d_{\rm calcd}$, g cm ⁻³	1.280
μ , cm ⁻¹	5.494
T, °C	25
R ^a	0.041
$R_{\rm w}{}^b$	0.039
GOF^c	1.68

 ${}^{a}R = \sum |(F_{o} - F_{c})| \sum F_{o}. {}^{b}R_{w} = [\sum w(F_{o} - F_{c})^{2} / \sum wF_{o}^{2}]^{1/2}. {}^{c}GOF = [\sum [w(F_{o} - F_{c})^{2} / (M - N)]^{1/2} \text{ where } M = \text{number of reflections and } N = \text{number of parameters.}$

reaction mixture immediately turns from yellow to dark red. After the reaction was completed, diethyl ether was slowly added to precipitate a dark red semisolid. The mother liquor was removed via cannula, and the semisolid was dried under vacuum. The product [PPN]-[Mn(CO)₃(S-C₆H₄-NH)], suitable for X-ray crystallography, was recrystallized from vapor diffusion of diethyl ether into concentrated THF solution at -15 °C. The yield was 0.056 g (73%). IR (THF): 1973 vs, 1870 s (CO) cm⁻¹; 3339 br cm⁻¹ (N–H). ¹H NMR (C₄D₈O): δ 8.98 (br) ppm (N–H), 6.90 (d), 6.60 (t), 6.43 (t) ppm (SC₆H₄). ¹³C NMR (C₄D₈O): δ 115.04 (s), 115.43 (s), 119.79 (s), 128.65 (s), 133.12 (s), 133.23 (s) ppm (S-C₆H₄-NH). Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 499 (6639), 403 (9745), 304 (10 400). Anal. Calcd for C₄₅H₃₅O₃N₂P₂SMn: C, 67.50; H, 4.41; N, 3.50. Found: C, 67.28; H, 4.64; N, 3.68.

Reaction of [PPN][Mn(CO)₃(S-C₆H₄-NH)] and Thiophene-2-thiol. A portion (10 μ L, 0.11 mmol) of thiophene-2-thiol was added dropwise by syringe into [PPN][Mn(CO)₃(S-C₆H₄-NH)] (0.08 g, 0.1 mmol) in THF under N₂ at ambient temperature. A vigorous reaction occurred immediately, with the color of reaction mixture turning from dark red to orange yellow, and was monitored with FTIR. The IR spectrum, ν_{CO} (THF) 1991 vs, 1891 s, 1879 s cm⁻¹, having the same pattern as, but differing slightly in position from that of, *fac*-[Mn(CO)₃(S-C₆H₄-NH₂)]⁻ (IR, ν_{CO} (THF): 1989 vs, 1887 s, 1883 s cm⁻¹) obtained from reaction of HSC₆H₄NH₂ and [Mn(CO)₃(S-C₆H₄-NH)], indicated the formation of *fac*-[Mn(CO)₃(S-C₆H₄-NH₂)]⁻ (¹H NMR (C₄D₈O): δ 5.53 (br), 4.89 (br) ppm (NH₂)). Attempts to isolate this moderately stable *fac*-[Mn(CO)₃(S-C₆H₄-NH₂)]⁻ were unsuccessful. The orange yellow *fac*-[Mn(CO)₃(S-C₆H₄-S)(S-C₆H₄-NH₂)]⁻ solution was stirred under CO atmosphere for 5 min at room

Table 2. Selected Bond Distances (Å) and Angles (deg) for $[Mn(CO)_3(S-C_6H_4-NH)]^-$

Mn-S(1)	2.268(1)	Mn - N(1)	1.889(3)
Mn-C(1)	1.753(4)	Mn-C(2)	1.761(4)
Mn-C(3)	1.776(4)	S(1) - C(4)	1.714(4)
N(1) - C(9)	1.375(5)	C(1) - O(1)	1.153(5)
C(2) - O(2)	1.167(5)	C(3) - O(3)	1.156(5)
S(1)-Mn-N(1) S(1)-Mn-C(2) N(1)-Mn-C(1) N(1)-Mn-C(3) C(1)-Mn-C(3) Mn-S(1)-C(4)	83.42(9) 88.55(13) 120.34(16) 90.84(17) 91.36(20) 100.16(13)	$\begin{array}{c} S(1)-Mn-C(1)\\ S(1)-Mn-C(3)\\ N(1)-Mn-C(2)\\ C(1)-Mn-C(2)\\ C(2)-Mn-C(3)\\ Mn-N(1)-C(9) \end{array}$	97.37(15) 171.13(15) 147.98(16) 91.37(19) 92.83(19) 124.19(24)

temperature. The IR spectrum (ν_{CO} (THF) 2055 m, 1981 vs, 1959 s, 1916 s cm⁻¹) indicated the formation of the ring-opened complex *cis*-[Mn(CO)₄(S-C₄H₃S)(S-C₆H₄NH₂)]⁻. The complete conversion of *cis*-[Mn(CO)₄(S-C₄H₃S)(S-C₆H₄NH₂)]⁻ to *fac*-[Mn(CO)₃(S-C₄H₃S)(S-C₆H₄-NH₂)]⁻ was observed when removing CO atmosphere under vacuum in THF. Oxidation of complex *fac*-[Mn(CO)₃(S-C₄H₃S)(S-C₆H₄-NH₂)]⁻ by adding dry O₂ leads to formation of [Mn(CO)₃(S-C₆H₄-NH₂)]⁻ accompanied by byproducts H₂O and di(2-thienyl) disulfide identified by ¹H NMR.

Crystallography. Crystallographic data for the structure of complex [PPN][Mn(CO)₃(S-C₆H₄-NH)] are collected in Table 1. Bond distances and angles are collected in Table 2. Crystals of [PPN][Mn(CO)₃(S-C₆H₄-NH)] used for the X-ray diffraction structural determination were obtained from vapor diffusion of diethyl ether into concentrated THF solution at -15 °C under nitrogen atmosphere. The dark red crystal used for the study had approximate dimensions of $0.60 \times 0.50 \times 0.20$ mm. The crystal was mounted on a glass fiber and quickly coated in epoxy resin at 25 °C. The unit-cell parameters were obtained from 25 reflections with 2 θ between 16.40° and 23.22° for product [PPN][Mn-(CO)₃(S-C₆H₄-NH)]. Diffraction measurements were carried out on a Nonius CAD 4 diffractometer with graphite-monochromated Mo K α radiation, $\lambda = 0.7107$ Å, employing the $\theta/2\theta$ scan mode.¹⁴ A φ scan absorption correction was made. Structural determinations were made using the NRCC-SDP-VAX package of programs.¹⁵

Acknowledgment. We thank the National Science Council (Taiwan) for support of this work. The authors thank Professor Marcetta Y. Darensbourg for helpful suggestions.

Supporting Information Available: An X-ray crystallographic file, in CIF format, for the structure determination of $[PPN][Mn(CO)_3(S-C_6H_4-NH)]$ is available on the Internet only. Access information is given on any current masthead page.

IC9809153

⁽¹⁴⁾ North, A. C. T.; Philips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, *A24*, 351.

^{(15) (}a) Gabe, E. J.; LePage, Y.; Chrarland, J. P.; Lee, F. L.; White, P. S. J. Appl. Crystallogr. **1989**, 22, 384. (b) Atomic scattering factors were obtained from: *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. IV.